Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract With the increase in technical capabilities of computer simulation in recent years, it has become feasible to quantify the degradation of fluid scale plasma and electromagnetic energies in favor of increases of internal energies. While it is understood that electromagnetic energy can be exchanged with fluid scale velocities, it is the pressure strain interaction that exchanges energy between fluid motions and internal energy. Here using simulations of both turbulence and reconnection we show that for electrons, the pressure strain and electromagnetic work are closely related and are frequently comparable when appropriate time and spatial averaging is applied. Otherwise, the instantaneous spatial averaged pressure strain and electromagnetic work are nearly equal for slowly evolving systems, like the reconnection case, while they differ significantly in rapidly evolving systems, like the turbulence case. This clarifies the relationship between these two quantities, which are each frequently used as measures of dissipation.more » « less
- 
            Abstract We present a broad review of$$1/f$$ noise observations in the heliosphere, and discuss and complement the theoretical background of generic$$1/f$$ models as relevant to NASA’s Polarimeter to UNify the Corona and Heliosphere (PUNCH) mission. First observed in the voltage fluctuations of vacuum tubes, the scale-invariant$$1/f$$ spectrum has since been identified across a wide array of natural and artificial systems, including heart rate fluctuations and loudness patterns in musical compositions. In the solar wind the interplanetary magnetic field trace spectrum exhibits$$1/f$$ scaling within the frequency range from around$$\unit[2 \times 10^{-6}]{Hz}$$to around$$\unit[10^{-3}]{{Hz}}$$at 1 au. One compelling mechanism for the generation of$$1/f$$ noise is the superposition principle, where a composite$$1/f$$ spectrum arises from the superposition of a collection of individual power-law spectra characterized by a scale-invariant distribution of correlation times. In the context of the solar wind, such a superposition could originate from scale-invariant reconnection processes in the corona. Further observations have detected$$1/f$$ signatures in the photosphere and corona at frequency ranges compatible with those observed at 1 au, suggesting an even lower altitude origin of$$1/f$$ spectrum in the solar dynamo itself. This hypothesis is bolstered by dynamo experiments and simulations that indicate inverse cascade activities, which can be linked to successive flux tube reconnections beneath the corona, and are known to generate$$1/f$$ noise possibly through nonlocal interactions at the largest scales. Conversely, models positing in situ generation of$$1/f$$ signals face causality issues in explaining the low-frequency portion of the$$1/f$$ spectrum. Understanding$$1/f$$ noise in the solar wind may inform central problems in heliospheric physics, such as the solar dynamo, coronal heating, the origin of the solar wind, and the nature of interplanetary turbulence.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Abstract A well-known property of solar wind plasma turbulence is the observed anisotropy of the autocorrelations, or equivalently the spectra, of velocity and magnetic field fluctuations. Here we explore the related but apparently not well-studied issue of the anisotropy of plasma density fluctuations in the energy-containing and inertial ranges of solar wind turbulence. Using 10 yr (1998–2008) of in situ data from the Advanced Composition Explorer mission, we find that for all but the fastest wind category, the density correlation scale is slightly larger in directions quasi-parallel to the large-scale mean magnetic field as compared to quasi-perpendicular directions. The correlation scale in fast wind is consistent with isotropic. The anisotropy as a function of the level of correlation is also explored. We find at small correlation levels, i.e., at energy-containing scales and larger, the density fluctuations are close to isotropy for fast wind, and slightly favor more rapid decorrelation in perpendicular directions for slow and medium winds. At relatively smaller (inertial range) scales where the correlation values are larger, the sense of anisotropy is reversed in all speed ranges, implying a more “slablike” structure, especially prominent in the fast wind samples. We contrast this finding with published results on velocity and magnetic field correlations.more » « less
- 
            Previously, using an incompressible von Kármán–Howarth formalism, the behavior of cross-scale energy transfer in magnetic reconnection and turbulence was found to be essentially identical to each other, independent of an external magnetic (guide) field, in the inertial and energy-containing ranges [Adhikari et al., Phys. Plasmas 30, 082904 (2023)]. However, this description did not account for the energy transfer in the dissipation range for kinetic plasmas. In this Letter, we adopt a scale-filtering approach to investigate this previously unaccounted-for energy transfer channel in reconnection. Using kinetic particle-in-cell simulations of antiparallel and component reconnection, we show that the pressure–strain interaction becomes important at scales smaller than the ion inertial length, where the nonlinear energy transfer term drops off. Also, the presence of a guide field makes a significant difference in the morphology of the scale-filtered energy transfer. These results are consistent with kinetic turbulence simulations, suggesting that the pressure strain interaction is the dominant energy transfer channel between electron scales and ion scales.more » « less
- 
            ABSTRACT We examine dissipation and energy conversion in weakly collisional plasma turbulence, employing in situ observations from the Magnetospheric Multiscale mission and kinetic particle-in-cell simulations of proton–electron plasma. A previous result indicated the presence of viscous-like and resistive-like scaling of average energy conversion rates – analogous to scalings characteristic of collisional systems. This allows for extraction of collisional-like coefficients of effective viscosity and resistivity, and thus also determination of effective Reynolds numbers based on these coefficients. The effective Reynolds number, as a measure of the available bandwidth for turbulence to populate various scales, links turbulence macroscale properties with kinetic plasma properties in a novel way.more » « less
- 
            Abstract An important aspect of energy dissipation in weakly collisional plasmas is that of energy partitioning between different species (e.g., protons and electrons) and between different energy channels. Here we analyse pressure–strain interaction to quantify the fractions of isotropic compressive, gyrotropic, and nongyrotropic heating for each species. An analysis of kinetic turbulence simulations is compared and contrasted with corresponding observational results from Magnetospheric Multiscale Mission data in the magnetosheath. In assessing how protons and electrons respond to different ingredients of the pressure–strain interaction, we find that compressive heating is stronger than incompressive heating in the magnetosheath for both electrons and protons, while incompressive heating is stronger in kinetic plasma turbulence simulations. Concerning incompressive heating, the gyrotropic contribution for electrons is dominant over the nongyrotropic contribution, while for protons nongyrotropic heating is enhanced in both simulations and observations. Variations with plasma β are also discussed, and protons tend to gain more heating with increasing β .more » « less
- 
            Abstract Exact laws for evaluating cascade rates, tracing back to the Kolmogorov “4/5” law, have been extended to many systems of interest including magnetohydrodynamics (MHD), and compressible flows of the magnetofluid and ordinary fluid types. It is understood that implementations may be limited by the quantity of available data and by the lack of turbulence symmetry. Assessment of the accuracy and feasibility of such third-order (or Yaglom) relations is most effectively accomplished by examining the von Kármán–Howarth equation in increment form, a framework from which the third-order laws are derived as asymptotic approximations. Using this approach, we examine the context of third-order laws for incompressible MHD in some detail. The simplest versions rely on the assumption of isotropy and the presence of a well-defined inertial range, while related procedures generalize the same idea to arbitrary rotational symmetries. Conditions for obtaining correct and accurate values of the dissipation rate from these laws based on several sampling and fitting strategies are investigated using results from simulations. The questions we address are of particular relevance to sampling of solar wind turbulence by one or more spacecraft.more » « less
- 
            Abstract The dissipative mechanism in weakly collisional plasma is a topic that pervades decades of studies without a consensus solution. We compare several energy dissipation estimates based on energy transfer processes in plasma turbulence and provide justification for the pressure–strain interaction as a direct estimate of the energy dissipation rate. The global and scale-by-scale energy balances are examined in 2.5D and 3D kinetic simulations. We show that the global internal energy increase and the temperature enhancement of each species are directly tracked by the pressure–strain interaction. The incompressive part of the pressure–strain interaction dominates over its compressive part in all simulations considered. The scale-by-scale energy balance is quantified by scale filtered Vlasov–Maxwell equations, a kinetic plasma approach, and the lag dependent von Kármán–Howarth equation, an approach based on fluid models. We find that the energy balance is exactly satisfied across all scales, but the lack of a well-defined inertial range influences the distribution of the energy budget among different terms in the inertial range. Therefore, the widespread use of the Yaglom relation in estimating the dissipation rate is questionable in some cases, especially when the scale separation in the system is not clearly defined. In contrast, the pressure–strain interaction balances exactly the dissipation rate at kinetic scales regardless of the scale separation.more » « less
- 
            null (Ed.)Unlike the vast majority of astrophysical plasmas, the solar wind is accessible to spacecraft, which for decades have carried in-situ instruments for directly measuring its particles and fields. Though such measurements provide precise and detailed information, a single spacecraft on its own cannot disentangle spatial and temporal fluctuations. Even a modest constellation of in-situ spacecraft, though capable of characterizing fluctuations at one or more scales, cannot fully determine the plasma’s 3-D structure. We describe here a concept for a new mission, the Magnetic Topology Reconstruction Explorer (MagneToRE), that would comprise a large constellation of in-situ spacecraft and would, for the first time, enable 3-D maps to be reconstructed of the solar wind’s dynamic magnetic structure. Each of these nanosatellites would be based on the CubeSat form-factor and carry a compact fluxgate magnetometer. A larger spacecraft would deploy these smaller ones and also serve as their telemetry link to the ground and as a host for ancillary scientific instruments. Such an ambitious mission would be feasible under typical funding constraints thanks to advances in the miniaturization of spacecraft and instruments and breakthroughs in data science and machine learning.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
